Oscillations of Third Order Half Linear Neutral Differential Equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oscillation Results for Third Order Half-linear Neutral Difference Equations

In this paper some new sufficient conditions for the oscillation of solutions of the third order half-linear difference equations ∆ ( an(∆ (xn + bnh(xn−δ))) α ) + qnf(xn+1−τ ) = 0 and ∆ ( an(∆ (xn − bnh(xn−δ))) α ) + qnf(xn+1−τ ) = 0 are established. Some examples are presented to illustrate the main results.

متن کامل

On the Oscillation of Third Order Half-linear Neutral Type Difference Equations

where α > 0, qn ≥ 0, 0 ≤ pn ≤ p < ∞. By using Riccati transformation we establish some new sufficient conditions which ensure that every solution of equation (E) is either oscillatory or converges to zero. These results improve some known results in the literature. Examples are provided to illustrate the main results. 2000 AMS Subjects Classification: 39A10

متن کامل

Oscillation of Third-Order Neutral Delay Differential Equations

and Applied Analysis 3 Theorem 2.1. Assume that 1.4 holds, 0 ≤ p t ≤ p1 < 1. If for some function ρ ∈ C1 t0,∞ , 0,∞ , for all sufficiently large t1 ≥ t0 and for t3 > t2 > t1, one has lim sup t→∞ ∫ t t3 ⎛ ⎜⎝ρ s q s (1 − p τ s ) ∫τ s t2 (∫v t1 1/a u du/b v ) dv ∫s t1 1/a u du − a s ( ρ′ s )2 4ρ s ⎞ ⎟⎠ds ∞, 2.1 ∫∞

متن کامل

Oscillation of third-order nonlinear neutral differential equations

With the development of modern society, research on properties of ordinary differential equation is becoming one of the hotspots in mathematical field. Neutral differential equation which is usually generated in natural science and engineering field is always extensively concerned by many scientific researchers for it can effectively describe multiple complex phenomena in natural world. In rece...

متن کامل

Approximately $n$-order linear differential equations

We prove the generalized Hyers--Ulam stability  of $n$-th order linear differential equation of the form $$y^{(n)}+p_{1}(x)y^{(n-1)}+ cdots+p_{n-1}(x)y^{prime}+p_{n}(x)y=f(x),$$ with condition that there exists a non--zero solution of corresponding homogeneous equation. Our main results extend and improve the corresponding results obtained by many authors.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Baghdad Science Journal

سال: 2015

ISSN: 2411-7986,2078-8665

DOI: 10.21123/bsj.12.3.625-631